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Abstract

Early diagnosis of Alzheimer’s disease (AD) plays a key role in preventing and respond-
ing to this neurodegenerative disease. It has shown that, compared with a single imaging
modality-based classification of AD, synergy exploration among multimodal neuroimages
is beneficial for the pathological identification. However, effectively exploiting multimodal
information is still a big challenge due to the lack of efficient fusion methods. Herein, a
multimodal fusion network based on attention mechanism is proposed, in which magnetic
resonance imaging (MRI) and positron emission computed tomography (PET) images are
converted into feature vectors with the same dimension, while the demographic infor-
mation and clinical data are preprocessed and converted into feature vectors through
embedding. This attention model can focus on important feature points, fuse the multi-
modal information more effectively, and thus provide accurate diagnosis and prediction
for different pathological stages. The results show that the model achieves an accuracy
of 84.1% for triple classification tasks in normal cognition (NC) versus mild cognitive
impairment (MCI) versus AD and 93.9% prediction accuracy in stable MCI (sMCI) versus
progressive MCI (pMCI). In contrast to the existing multimodal diagnosis methods, our
model yields a state-of-the-art accuracy of AD diagnosis, which is powerful and promising
in clinical practice.

1 INTRODUCTION

Alzheimer’s disease (AD) is one of the most common neu-
rodegenerative diseases in the elderly, which is characterized by
the symptoms of cognitive impairment and memory loss. It is
a progressive pathophysiological process with insidious onset
and irreversible damage of the brain. Mild cognitive impairment
(MCI) is a transitional state between normal cognition (NC) and
AD, which can be considered as an early stage of AD. To date,
there is not a definite cure for a subject that diagnosed as AD.
Although the early detection and intervention of AD is promis-
ing to prevent it, due to the lack of a clear understanding of
the etiology, early identification of AD remains a great challenge
[1]. Currently, early diagnosis and intervention of AD by medi-
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cal experts is based on their subjective assessment through the
use of multiple neuroimaging modalities such as magnetic reso-
nance imaging (MRI) as well as the clinical records such as age,
gender, blood pressure. However, the assessments undoubtedly
vary among different experts, depending on their professional
experiences.

Recently, the increasing development of machine learning
has brought new vitality to the research of AD diagnosis
and treatment, especially at an early stage. By using machine
learning-based algorithm, quantitative features can be extracted
from neuroimaging modalities to construct a robust, objec-
tive and automatic system for the assistant diagnosis of AD
[2]. These machine learning tools are capable of earlier detec-
tion and accurate prediction of AD. Furthermore, machine
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learning can describe the relationship between the input medical
measurements and clinical results, which contributes to guide
clinical decision-making. Given a continuous and progressive
process of AD, the diagnosis is aimed to identify or predict
NC, MCI and AD patients. The main purpose of the existing
research is to improve the classification accuracy. Classifica-
tion frameworks have been extensively studied using a single
imaging modality of MRI. Qing Li et al. [3] developed a deep
learning model to distinguish AD or MCI from NC based
on the multi-feature kernel supervised within-Class-similar dis-
criminative dictionary learning algorithm (MKSCDDL), which
achieved an accuracy of 98.18% for the classification of AD
and NC, 78.50% for the classification of MCI and NC, and
74.47% for the classification of AD with MCI. In comparison
to single modality, multimodal methods have recently exhib-
ited greater advantages for improving the classification accuracy
and the understanding of AD patterns. This is reasonable since
different modalities can capture AD information from differ-
ent perspectives. For instance, positron emission tomography
(PET) provides complementary information to MRI, which is
able to obtain sensitive measurements of cerebral metabolic
rates of glucose via the diffusion of radioactive agents. Man-
hua Liu et al. [4] proposed to construct cascaded convolutional
neural networks to learn the multi-level and multimodal features
of MRI and PET brain images for AD classification. Experi-
mental results showed that the proposed method achieves an
accuracy of 93.26% for classification of AD versus NC, which
was 5%−9% higher than the results using unimodal MRI or
PET, and 82.95% for classification pMCI versus NC, which was
4%−5% higher than the results using unimodal MRI or PET.
These facts demonstrate that the combination of modalities
may be an effective approach to increase the overall classifica-
tion performance, thus deserving to be intensively studied. It is
worth noting that, most existing methods have been proposed
to fuse the multimodal features from different neuroimaging
modalities through the direct splicing [5]. However, these meth-
ods lack their interpretability required to clearly explain the
specific meaning of extracted features and how the feature
fusion of different modalities can further contribute to the clas-
sification and prediction with the quantitative point of view.
To make the multimodal fusion more effective and persuasive,
more efforts are urgently needed to be devoted [6–11].

In addition, medical examination and evaluation data (MED),
including the demographic information, clinical symptom
scores and genetic risk factor conferred by APOE4, can refine
the prediction of the machine learning model and improve the
confidence of the model in the cognition of the pathological
state, thereby making more robust prediction. Meanwhile, the
acquisition of MED is more convenient and cost-effective over
the imaging modalities. To the best of our knowledge, however,
there are few studies in which different neuroimaging modali-
ties and MED are combined to construct a auxiliary diagnosis
model.

Taking all the above mentioned into consideration, in this
paper, a novel classification method based on the unique combi-
nation of two neuroimaging modalities and MED is presented,
aiming to investigate the effective fusion of multimodal data,

and simultaneously improve the accuracy of Alzheimer’s dis-
ease diagnosis as well as predict the progression of cognitive
impairment to dementia. The multimodal Alzheimer’s disease
problem studied in this article is mainly based on the compre-
hensive judgment of multiple pathological examination results
[PET, MRI, and data] of the same case x. That is, the final result
is y = ∫ (PET, MRI, data) . To be specific, 3D convolutional
neural networks are first utilized to extract key features from
MRI and PET images and convert them into image feature vec-
tors with the same latitude, while the demographic information,
clinical symptom scores and genetic data are normalized and
converted into data feature vectors through embedding. Both
image feature vectors and data feature vectors are further fused
using an attention mechanism approach to generate the latent
multimodal correlation features of the MRI/PET images and
MED. Finally, these learned features are combined by a fully
connected layer followed by the softmax layer to achieve the
classification of different stages of AD and further predict the
progression trend of MCI, serving as upstream and downstream
tasks, respectively. This work presents three distinct advantages:
(1) Multimodal data fusion with a self-attentive mechanism
is more effective to align and fuse different modal data fea-
tures in high-dimensional space; (2) Task migration between
upstream AD/MCI/NC classification model and downstream
pMCI/sMCI model improves the generalization of this classi-
fication task, and meanwhile, reduce training costs; (3) Explore
to discover the internal connection of different modes and build
multi-modal feature map to realize multi-modal joint diagnosis

2 RELATED WORKS

With the advancement of medical technology research more
and more people recognize that Alzheimer’s disease is caused
by the interaction of multiple pathological factors, and the diag-
nosis of disease development by analyzing different factors
becomes the key of current research. Multimodal representation
learning based on deep learning has received much attention in
recent years, which has powerful multi-level abstraction repre-
sentation capability to narrow the heterogeneity gap between
different modalities. Medical data from different modalities
reflect different aspects of pathological changes in Alzheimer’s
disease, and using deep learning to fuse multimodal data to
obtain complementary information can improve the accuracy
of diagnosis and the interpretability of results. Applying mul-
timodal analysis methods to multiple neuroimaging techniques
targeting specific pathological processes will allow us to gain a
comprehensive understanding of their relative roles, sequences,
and causal relationships. There have been many breakthroughs
in recent years in multimodal diagnosis of Alzheimer’s disease,
which are important to improve the diagnosis of neurodegener-
ative diseases and to understand the pathological processes that
lead to the disease.

In order to combine information from multimodal data, the
simplest approach is to directly connect high-dimensional fea-
tures extracted from different modalities [12]. Specifically, first
the features from different modalities are normalized and the
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TABLE 1 Information of the subjects used in this work.

RAVLT

Class Num

Age

(avg)

Gender

(M/F) Education

APOE4

(0/1/2) MMSE

ADAS

(11/13) immediate learning forgetting perc_forgetting

AD 154 (45) 74 ± 8 29/16 15.3 ± 6 16/23/6 23.1 ± 1 11.4/17.2 26.2 4.0 4.1 54.6

NC 223 (57) 73 ± 10 28/29 16.4 ± 4 39/18/0 29.0 ± 2 9.3/11.3 38.3 6.3 3.8 44.6

pMCI 155 (33) 75 ± 7 20/13 16.9 ± 4 9/9/15 26.1 ± 2 11.3/17.2 33.3 4.4 4.1 54.1

sMCI 386 (92) 72 ± 8 57/35 15.7 ± 5 47/35/10 27.3 ± 3 11.1/16.5 36.6 4.7 4.0 49.5

features from each silent station are directly synthesized into a
vector by concatenating them in series or in parallel, using the
joint feature vector to train the classifier. However, simple con-
catenation does not optimally integrate the use of multimodal
data, but rather Favors a single modality [13]. To effectively uti-
lize multimodal information complementarily non-linear graph
fusion methods can be used [13], and similarly multimodal mul-
titask learning models can jointly predict multiple variables from
multimodal data including brain images predicting continuous
clinical scores [14] to subsequently determine AD status. In
addition to predicting clinical scores, joint learning using multi-
domain regression and classification tasks [15] can also identify
the transition from MCI to AD patients.

In recent studies, most existing methods use imaging data
from a single time node to detect pathological changes in AD
diagnosis [4, 16]. In fact, longitudinal data collected at follow-
up time points often provide useful information about the
pathological development of the disease [12, 17]. Consecutive
examinations of medical data can make greater use of multi-
modal neuroimaging and genetic data to improve the accuracy
of Alzheimer’s disease diagnosis. Also, with the availability of
longitudinal image data at multiple time points, it is possible to
use them to improve the predictive power of Alzheimer’s disease
[18]. In addition to traditional medical imaging and bioinformat-
ics that will be used for Alzheimer’s multimodal data studies,
acoustic, cognitive, and linguistic features can also be used for
integrated multimodal learning [19].

3 MATERIALS AND METHODS

3.1 Datasets

The data used in the training phase of this paper were obtained
from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database. ADNI provides research data for those researchers all
over the world, who are dedicated to the study of the progres-
sion of AD. 3T-MRI and PET image data used in this work were
downloaded from the ADNI as pre-processed files. Dataset
consisted of multiple sampling results from 227 subjects over
three consecutive years, including 45 AD, 92 sMCI, 33 pMCI
and 57 NC (see details in Table 1, with multiple test samples
per subject). It is worth noting that, for each individual sub-
ject, MRI and PET images captured in the same period were

collected as multimodal image Dataset. Correspondingly, demo-
graphic information and clinical data in the same period were
also collected as supplementary information for each subject.
Whether MCI subjects will progress to AD (known as pMCI)
or not (known as sMCI) within a certain period is particularly
vital in practice, therefore, the sMCI and pMCI data are labelled
according to the status of case development over a three-year
period.

MED includes the demographic information and clinical
data. As shown in Table 1, demographic data comprise gen-
der, age, and education level. A previous study [4] indicated
that, age, gender, and education may be influenced the brain
status, and therefore contribute to AD diagnosis. Clinical data
includes APOE4 allele genotyping, Clinical Dementia Rating
Scale (CDRS), Alzheimer’s Disease Rating Scale, and Auditory
Verbal Learning Test (RAVLT).

3.2 Network architecture

The proposed method here can be divided into three stages,
as shown in Figure 1. The first stage is the feature extrac-
tion from multimodal data, in which high-dimensional features
are extracted from MRI and PET images by the ConvBlock
module, respectively. ConvBlock consists of several parts: a 3D
volume machine layer (Conv3d), BatchNorm layer, activation
function (ELU), 3D pooling layer (MaxPool3d) and Dropout.
In addition, genetic information conferred by APOE4, demo-
graphic data and clinical symptom scores are normalized and
transformed into data feature vectors through embedding.

At the second stage, multimodal feature fusion based on
attention mechanism is used to merge complementary informa-
tion from different imaging modalities and MED, so that a more
comprehensive description of the subjects can be obtained in
contrast to the individual input data. First, the high-dimensional
image features from MRI and PET are merged, while multi-
ple data features from MED are processed in the same way.
Subsequently, these two feature vectors are further fused in the
middle layer by channel attention mechanism (CA) and spatial
attention mechanism (SA). Specifically, the attention mecha-
nism is utilized in the feature fusion stage, which makes the
model focus more on the latent information that are decisive
for the outcomes. As a consequence, this attention-based fusion
method is capable of extracting more critical and important
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3156 CHEN ET AL.

FIGURE 1 Proposed multimodal architecture for AD classification.

information, meanwhile improving the effective contributions
of demographic information and clinical data as complementary
to image features. Noteworthy, due to the fact that the number
of feature points of demographic information and clinical data
features are much less than that of medical image features, over-
fitting may occur during the process of feature fusion. We have
provided a solution to overfitting in Section 3.4.1.

At the third stage, ConvBlock with a fully-connected (FC)
layer and a softmax layer is adopted to obtain the final classifi-
cation results through the recognition of fused features. During
this process, the back propagation mechanism of the rolled-
up network continuously optimizes the network parameters to
improve the performance of the classification model in both the
training and test cohorts. By using this classification model, we
execute both binary (AD vs NC, AD vs MCI and MCI vs NC)
and triple (AD vs MCI vs NC) classification tasks. In addition,
the predictive binary classification is used to classify the MCI
group into sMCI and pMCI groups.

To establish such classification model, we employ a 3D con-
volutional neural network (CNN) to efficiently extract rich
spatial information from 3D brain images [4]. In this 3D CNN
model, the 3D convolutional layer first convolves each input
image with the learned kernel filter, then adds a bias term
and applies a nonlinear activation function, and finally gener-
ates a feature vector through the filter. The 3D convolutional
operation is defined by the formula:

ul
k j

(
x, y, z

)
=

∑
𝛿x

∑
𝛿y

∑
𝛿z

F l−1
k

(
x + 𝛿x , y + 𝛿y, z + 𝛿z

)

×W l
k j

(
𝛿x , 𝛿y, 𝛿z

)
(1)

where x, y and z represent the pixel positions of a given 3D
image. W l

k j (𝛿x , 𝛿y, 𝛿z ) stands for the jth 3D kernel weight con-
necting the kth feature map of layer l−1 and the jth feature map
of layer l. F l−1

k is the kth feature map of the previous l−1 layer,
and δx, δy, δz are the kernel sizes corresponding to the x, y and z
coordinates. The output ul

k j (x, y, z ) is the convolution response
of the 3D kernel filter. After convolution, each convolution layer
is followed by using the activation function Sigmoid:

F l
j

(
x, y, z

)
= Sigmoid

(
bi

j +
∑

k
ul

k j

(
x, y, z

))
(2)

where bi
j is the deviation term of the jth feature map of the lth

layer. The 3D feature vector of the jth lth F l
j (x, y, z ) layer is

obtained by summing the feature maps of different convolution
kernels. By capturing spatial correlation using 3D kernels, 3D
CNNs can capture a large amount of spatial structure informa-
tion from the high aspect of medical images, which is critical for
feature representation of medical images.

3.3 Attention mechanism

Attention mechanism has been widely used in different types
of machine learning tasks, such as natural language process-
ing, image recognition, speech recognition etc. The essence of
attention is to highlight some important features based on the
correlations between different parts of the input, which guides
the model to reallocate the corresponding weights to each part
of the input so that the model can gain reinforced learning
ability without incurring computing and storage overheads.
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CHEN ET AL. 3157

FIGURE 2 (a) Feature fusion based on attention mechanism;(b) channel attention; (c) spatial attention.

Figure 2a presents a schematic representation of the attention
module. For a given input feature map, both the CA and SA
are implemented. CA focuses on the content while SA focuses
on the location. To better fuse images with different patterns,
the pipelines of CA and SA are concatenated in our work with
reference to Convolutional Block Attention Module (CBAM)
[20].

Figure 2b shows a schematic diagram of the CA module.
The spatial information of the feature mapping is aggregated
using the average-pooling and max-pooling operations respec-
tively, and two different spatial context descriptors F c

avg and F c
max

correspondingly generated as average-pooled features and max-
pooled features. The two descriptors are then passed through
the MLP separately to generate the channel attention map-
ping Mc ∈ RCx1×1,and the MLP output features are subjected
to element-wise summation-based operation and then sigmoid
activation operation to generate the final channel attention

feature map. To reduce the parameter overhead, the hidden acti-
vation size is set to be RC∕rx1×1,where r is the scaling rate. After
applying the shared network to each descriptor, the output fea-
ture vectors are merged based on element-by-element addition.
The channel attention is calculated as follows:

Mc (F ) = 𝜎(MLP (AvgPool (F )) + MLP (MaxPool (F )))

= 𝜎
(
W1(W0(F c

avg )) +W1 (W0 (F c
max ))

)
(3)

where σ identifies the sigmoid function, W0 ∈ R(C∕rx1×1). W0
and W1 are the weights of MLP respectively.

Figure 2c shows a schematic diagram of the SA module. First,
the feature map, i.e., the output of the CA module, is used as
the input feature map of SA module. Afterwards, global max
pooling and global average pooling based on channel were per-
formed to get F s

avg and F s
max respectively, and these two results
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3158 CHEN ET AL.

were further merged based on channel. Finally, the spatial atten-
tion feature is generated by multiplying this feature with the
input feature of the module to generate the final feature. The
spatial attention is calculated as follows:

Ms (F ) = 𝜎
(

f 7×7×7
([

AvgPool (F ) ;MaxPool (F )]
))

= 𝜎
(

f 7×7×7
([

F s
avg;F

s
max

])) (4)

where σ identifies the sigmoid function, and seven indicates
the size of the convolution kernel. Unlike CBAM, herein, a 3D
convolution was used.

3.4 Evaluation

In this experiment, the model was used to execute the various
classification tasks in both the training and test cohorts. The
performance of the proposed model was assessed by using dif-
ferent evaluation measures, including the accuracy, specificity,
sensitivity, F1-score. Note that, the general classification net-
work is assessed by the accuracy, however, the practical project
of predicting patients is more concerned with the recall rate.
In addition, F1-score, the harmonic mean of precision and
recall, was calculated to further characterize the model. These
evaluation measures are defined as follow:

Accuracyk =
TP + TN

total
(5)

Specificityk =
TN

TN + FP
(6)

Sensitivityk = Recal lk =
TP

TP + FN
(7)

Precisionk =
TP

TP + FP
(8)

F 1k =
2 ∗ precisionk ∗ recallk

precisionk + recallk
(9)

F 1 − Score =
1
n

∑n

(k=0)
F 1k (10)

where total is the total number of samples, and n is the num-
ber of categories, TP, TN, FP, and FN represent the number
of true positives, true negatives, false positives, and false neg-
atives, respectively. k represents the classification category. F1
score was finally obtained by computing an average of the F1k
scores over classes.

All of the symbols used here are defined in the Appendix
Table A1 for better clarity.

4 EXPERIMENT AND RESULTS

4.1 Experimental settings

All code was implemented using Python 3.7.4 and Pytorch 1.5.1.
All experiments were executed under CUDA 10.0 and all exper-

FIGURE 3 Accuracies in binary classification tasks using proposed
multimodal framework.

iments were performed using four 11GB NVIDIA Tesla V100
GPUs to train the models. Medical data features are generally
sparse matrices with large gradient changes during training, so
the network optimizer was set to Adam using adam for better
interpretability of hyperparameter settings. The initial learning
rate was set to 1e-2 [21] and the batch size was set to 8, the num-
ber of epochs was set to 50, and the training time for one task
was 10 h. Additionally, the binary cross-entropy was employed
as the loss function for the binary classification task, while the
categorical cross-entropy was used for the ternary classification
task. The classification module uses the Softmax function to
compress different type label values within the range of [0,1],
and the sum of all vectors after conversion is 1. Softmax has a
gradient of 0 when the input is negative, which means it does
not backpropagate the negative input, thus avoiding the gradi-
ent from disappearing. According to the following formula 11,
Softmax preserves each value in a normalized manner.

Softmax (x) =
exp (xi )∑
i exp (xi )

(11)

5-fold cross-validation strategy used to calculate the model per-
formance, to avoid overfitting problems with limited datasets
and simultaneously obtain a fairer comparison. The subjects
were randomly divided into five subsets with one subset as the
test cohort and other four as the training cohorts. We trained
each experiment over 50 calendar hours and updated the learn-
ing rate using two strategies. The experimental results were
presented as the mean ± SD (standard deviation) of fivefold
tests.

4.2 Performance

4.2.1 Results for classification

The proposed attention mechanism-based multimodal fusion
model was first utilized to execute the binary classification
tasks. The classification performance was assessed in terms of
the accuracy, sensitivity, specificity and F1 scores. As shown
in Figure 3, the fivefold cross-validation corresponding to 50
Epoch results demonstrate that, in three binary classification
tasks, that are AD versus NC, MCI versus AD, and MCI ver-
sus NC, the accuracies reach 97.90%, 92.84%, and 87.85%,

 17519667, 2023, 11, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/ipr2.12841 by U

niversity O
f C

alifornia, San, W
iley O

nline L
ibrary on [01/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



CHEN ET AL. 3159

FIGURE 4 Sensitivities and specificizes in binary classification tasks
using proposed multimodal framework.

FIGURE 5 F1-scores in binary classification tasks using proposed
multimodal framework.

respectively. According to Figure 4, the model performance has
the sensitivity of 98.69%, 97.26% and 92.43% and specificity
of 98.42%, 96.26% and 92.68%in the classification of AD ver-
sus NC, MCI versus NC and AD versus MCI. Moreover, the
model attains the F1 scores of 99.5% for AD versus NC, 98.1%
for MCI versus AD, 89.5% for MCI versus NC (Figure 5).
Given the fact that more data from sMCI were collected in this
paper than that from pMCI, the accuracy and F1 score for the
binary classification of MCI versus AD, are higher than that of
MCI versus NC. The results demonstrate an excellent overall
performance of the model.

The performance of our model in the triple classification of
AD/MCI/NC was further estimated and the results are shown
in Figure 6. After 50 Epochs of training the multimodal model
triple classification (AD vs MCI vs NC) achieved an average
accuracy of 84.10%.

In order to verify the performance of multimodal fusion in
multiple tasks, the accuracy of different tasks was further tested
by fusing data of different modalities. As shown in Figures 6
and 7, in both the binary and triple classification problems,
that are AD versus NC, MCI versus. AD, MCI versus NC,
as well as AD versus MCI versus NC, the model using MRI,
PET and MED performs superiorly against other counterparts
(MRI and PET, MRI and MED) in accuracy, sensitivity, speci-
ficity and F−1 scores. To be specific, by using MRI and PET

FIGURE 6 Accuracies of various classification tasks through the feature
fusion of different data modalities.

FIGURE 7 Sensitivity, specificity and F1 score in a triple classification
task using different data modalities.

modalities, the performance achieves a classification accuracy of
88.33%, 88.57%, 82.98% and 81.05% for AD versus NC, MCI
versus AD, MCI versus NC and AD versus MCI versus NC,
respectively. When using MRI and MED modalities, the model
achieves a classification accuracy of 96.17%, 88.58%, 84.26%
and 81.10% for AD vs. NC, MCI vs. AD, MCI vs. NC and
AD vs. MCI vs. NC, respectively. However, the combination
of MRI, PET and MED modalities effectively improves the
classification accuracy, exhibiting 97.90%, 92.84%, 87.85% and
84.10% for AD versus NC, MCI versus AD, MCI versus NC
and AD versus MCI versus NC, respectively. Similarly, the sen-
sitivity, specificity and F−1 score for various classification tasks
were obviously improved using MRI, PET and MED modali-
ties in comparison with that using MRI and PET modalities or
MRI and MED modalities (Figure 7). This is reasonable since
MED can provide the complementary information to neuroim-
ages and simultaneously the attention-based fusion network can
effectively fuse the features extracted from images and MED.
As such, the proposed model with imaging and MED modalities
can effectively improve the classification accuracy of AD.

Finally, we analyze the effect of different data on the clas-
sification performance of the model by ablation experiments,
and the results are shown in Table 2. According to the experi-
ments, it is known that in PET features have a greater impact
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3160 CHEN ET AL.

TABLE 2 Results of the effect of different data on triple classification
(AD/MCI/CN).

Dataset

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

F1-score

(%)

MRI+ Data 81.10 79.57 82.66 81.60

PET+Data 81.66 87.50 86.10 86.67

MRI+PET 81.05 79.32 80.03 79.88

MRI+PET+Data 81.10 84.67 84.70 81.16

TABLE 3 Results of the effect of different loss functions on triple
classification (AD/MCI/CN).

Methods

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

F1-score

(%)

Adam 81.10 84.67 84.70 81.16

Adadelta 79.16 78.17 77.06 79.67

SGD 66.00 66.51 69.50 66.67

RMSprop 47.30 44.16 44.00 44.18

TABLE 4 Results of the effect of different modules on triple classification
(AD/MCI/CN).

Methods

Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

F1-score

(%)

NIN- 62.50 61.53 62.04 62.90

CA- 68.70 63.34 68.00 68.10

SA- 59.17 59.10 56.67 59.31

CA-SA- 68.33 58.89 63.68 66.81

on the results and are more accurate in analyzing the results.
According to Table 3, by comparing the results of different loss
functions on the classification results, Adam loss function is
more suitable for this experiment. According to the experiments
on the network modules CA, SA, and NIN in Table 4 (“CA-”
i.e. remove the CA module from the original network struc-
ture), it is known that the SA module has a greater impact on
the model performance. Afterwards, we compared the metrics
of our method with previously reported multimodal diagnostic
methods and the comparative results are shown in Table 5. It
is easily shown that, our method achieves better performance
compared to the previous studies in the classification of AD. It
is especially noted that, the accuracy in the triple classification
of AD versus MCI versus NC is significantly improved. This
can be attributed to the proposed method has the best feature
fusion and discrimination for various classification problems.

4.2.2 Results for prediction

As is known, MCI is an intermediate stage between NC and
AD, which can be divided into two subgroups sMCI and pMCI.
Meanwhile, given the fact that the difference between sMCI

FIGURE 8 classification accuracy of sMCI and pMCI (50 epochs).

FIGURE 9 classification performance of sMCI versus pMCI (Average
results of accuracy, sensitivity, specificity and F1 score).

and pMCI is very subtle, pMCI versus sMCI is considered to
be very challenging. However, differentiating between pMCI
from sMCI is of great importance to predict whether MCI sub-
jects will progress to AD. Here, the features extracted from the
upstream triple classification task (AD vs MCI vs NC) are also
of benefit to differentiate pMCI and sMCI, which were further
transferred to the classification of sMCI versus pMCI via incre-
mental learning. The results shown in Figure 8 demonstrate that
the model can discriminate a high intra-class difference for the
classification of pMCI versus sMCI, which presents a classifi-
cation accuracy of 93.94%, sensitivity of 96.28%, specificity of
95.51% and F1 score of 95.29% when combining MRI, PET
and MED modalities. Figure 9 shows the performance of the
model on the sMCI and pMCI classification tasks. The multi-
modal model combining MRI, PET and MED performs well
overall and can be used to predict the progression of MCI.
Meanwhile, the change trend of MCI can be used as a valid pre-
dictor of AD. Meanwhile the changing trend of MCI can be used
as an effective predictor of AD.

5 DISCUSSION

5.1 Parameter analysis

Here, 3D images are used as network inputs, which requires
a large number of convolutional layers to obtain the desired
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CHEN ET AL. 3161

TABLE 5 Classification accuracies comparison between previously reported methods and proposed method in different tasks.7

Accuracy (%)

Method Data sources Dataset AD vs NC MCI vs NC MCI vs AD AD vs MCI vs NC

Fang et al. [9] ADNI MRI+PET 87.69 80.70 66.29

Liu Q. et al. [22] ADNI MRI+PET 91.4 82.1 – –

Li et al. [23] ADNI MRI+PET 91.4 77.4 – –

Song et al. [24] ADNI MRI+PET 94.11 88.48 84.83 74.54

Our method ADNI MRI+PET 88.33 82.98 88.57 81.05

Tong et al. [8] ADNI MRI+PET+Data 91.8 79.5 – 60.2

Zhu et al. [25] ADNI MRI+PET+Data 88.02 84.14 – –

Zhang et al. [7] ADNI MRI+PET+Data 96.58 90.11 97.43 –

Our method ADNI MRI+PET+Data 97.90 92.84 87.85 84.10

expressiveness. However, building such a large number of layers
usually suffers from limited computational resources and mem-
ory. To solve this problem, depth-separable convolution was
used to reduce model parameters and achieve a delicate network
framework. Unlike the standard convolution, depth-separable
convolution is implemented by Depthwise Convolution and
Pointwise Convolution. To be specific, Depthwise Convolution
is first used for each channel to convolve the output and the
number of channels separately. Furthermore, a 1 × 1 × C con-
volution kernel (pointwise kernel) is used to obtain the final
value.

The parameters of the separable convolution are calculated
to be 192 × 3 × 3 × 3 × 128, that are 663,552 parameters in
total. In this calculation, the size of input feature map is 28 ×
28 × 28 × 192.

In Depthwise Convolution, channels and convolution ker-
nels correspond to each other. So, a three-channel image is
computed to generate 192 Feature maps with 5184 parameters.

Pointwise Convolution does the convolution again for the
three channels with convolution kernel 1 × 1 × 128, and
the same 128 Feature maps are output with the same output
dimension as the regular convolution with 24576 parameters.

The number of parameters of Separable Convolution is much
smaller than that of conventional convolution for the same
input and Feature maps. Therefore, Separable Convolution can
effectively reduce the network parameters under the premise of
network determination.

5.2 Optimized overfitting

Considering that medical images available for training the deep
learning model are limited, the overfitting problem is easily
encountered during the training. To overcome this problem,
several strategies such as batch normalization, Dropout and
K-fold are used to combat overfitting in this experiment.

Batch normalization performs a batch normalization oper-
ation on a 5D input (N,C,D,H,W) consisting of small batches
of 3D data, calculates the mean and standard deviation of each
dimension of the input, and normalizes the output of the layer

FIGURE 10 Accuracies of the classification of AD versus NC versus
MCI with different Dropouts.

by subtracting the mean and dividing it by the standard devia-
tion. This 3D normalization process enforces a fixed activation
distribution, thus stabilizing and accelerating the training speed
of the deep neural network.

During the training, Dropout was used to actively drop
certain feature units and their connections, which keeps the
network from relying on certain local features, improves the
robustness of hidden neurons to random fluctuations, and
learns useful information. Figure 10 demonstrates the effect of
different Dropouts on the triple classification of AD versus NC
versus MCI. It is clear that, the best performance of the triple
classification was obtained when the Dropout was set to 0.1, so
that the Dropout is set to 0.1 here.

Traditional dataset partitioning techniques split the data into
training and test sets for training, and this static approach leads
to the risk of overfitting on the test set, and the evaluation met-
rics are then not a true reflection of the model generalization
performance. Further partitioning the dataset into training, val-
idation and test sets reduces the number of samples used to
learn the model, and the results depend on a specific random
selection of the (training, validation) sets. To make the model
more effectively learn from the limited data, the K-Fold cross
validation method [26] is used in this paper, which is capable
of improving the data utilization, and preventing the overfitting
problem.
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3162 CHEN ET AL.

5.3 Multitasking

Multitask learning can be considered as a form of transfer
learning by sharing knowledge and model parameters among
different tasks to improve the generalization ability and effi-
ciency of the model. In multitask learning, the parameters of the
model are designed to be shared by multiple tasks, and this shar-
ing of parameters is considered as a form of transfer learning,
where the knowledge learned by the model from one task can
be transferred to other tasks. The premise of multi-task learn-
ing in model training is that there are multiple related tasks that
need to be completed simultaneously and that there is some
correlation between these tasks, which from a clinical perspec-
tive is more challenging for the diagnosis of MCI (pMCI vs
sMCI) compared to AD detection (AD vs NC). Considering
the intrinsic connection and common features between these
two tasks, using multitask leaning to solve both tasks together
is a promising approach [27]. In multitask learning, the model
typically contains a shared underlying representation and mul-
tiple task-specific output layers. The underlying representation
is a generic feature needed to learn all tasks, while the out-
put layer is optimized for the specific task. The benefit of a
shared underlying representation is that the model can share
the learned knowledge across all tasks, thus increasing the gen-
eralization capability of the model. In addition, the model can
better handle complex multi-task problems because the shared
underlying representation can better capture the relationships
between tasks. There are many advantages to using multi task
learning. Multi task learning assumes that the features learned
in multiple tasks are useful for all tasks, and there is a certain
correlation between multiple tasks. By sharing these features,
the generalization ability and efficiency of the model can be
improved without increasing the number of training samples,
thereby reducing the waste of training time and computing
resources. Multi task learning can be regarded as a regulariza-
tion technique, which limits the capacity of the model by sharing
model parameters, so as to avoid overfitting problems. Multi
task learning is regarded as a non-convex optimization problem,
where a specific optimization algorithm can be used to optimize
the objective functions of multiple tasks, resulting in an optimal
shared model.

Unlike traditional migration learning methods, multitask
learning assumes that there are multiple related tasks to be
completed simultaneously, and that the generalization ability
and efficiency of the model can be improved by sharing cor-
relation and feature information between tasks, that is, the
features learned in the upstream tasks for AD versus NC versus
MCI classification are beneficial for refining MCI classification.
Specifically, here, the classifier is divided into upstream and
downstream tasks, with the upstream task focusing on AD ver-
sus NC versus MCI classification, while the downstream task
performs pMCI versus sMCI classification. As can be seen from
Table 6, the use of migration learning only requires modify-
ing the network full-link layer so that the network is assigned
shared parameters that are adapted to multiple tasks to train
the model, which greatly saves model training time while ensur-
ing model accuracy. The visual representations extracted from

TABLE 6 Comparison of results (accuracy) and training time for different
tasks.

Task

PET+MRI+

DATA

PET+

MRI

MRI+

DATA

Train

time

NC/AD/MCI 84.10 81.05 81.10 10 h

sMCI/pMCI 93.94 74.05 81.14 4 h

FIGURE 11 Ideal performance of transfer learning model [28].

the AD versus NC versus MCI classification tasks are further
transferred to pMCI versus sMCI classification through multi-
task learning, thus improving the proposed model’s ability to
generalize better in pMCI versus sMCI classification. As can
be seen from Table 6, using migration learning only requires
modifying the network full linkage layer to adapt the network
assignment to train the model with shared parameters across
multiple tasks, ensuring model accuracy while greatly saving
model training time. Visual representations extracted from the
AD versus NC versus MCI classification task are further trans-
ferred for pMCI versus sMCI classification through multitask
learning, which improves a better generalization capability of
the proposed model in the pMCI versus sMCI classification.

Multitask learning is a type of migration learning that saves
time and achieves better performance. Multitask learning takes
more into account the intrinsic correlation between multimodal
data and ideally performs as shown in Figure 11, where poten-
tial representations of each modality are learned independently
in the upstream classification task, and shared model weights
allow for a higher initial point of training for the downstream
model. The downstream task relies on the existing capability of
the model to be able to train the model at a faster rate, reduce
the spatial distance of multimodal objects through label-aligned
multitask feature selection, and the fusion capability of the
trained model is better than direct training, further enhancing
the generalization capability of the model.

6 CONCLUSION

Here, a multimodal image feature fusion method based
on a self-attentive mechanism combining neuroimages and
MED is proposed for AD diagnosis. By using this model,
two neuroimaging modalities, demographic information, clin-
ical symptom scores and genetic data were combined to
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CHEN ET AL. 3163

generate features with different weights for classification tasks.
The results demonstrate that the proposed method can consis-
tently and significantly improve the classification and prediction
performance in contrast to single modality-based methods.
Specifically, the proposed method achieves 84.1% accuracy in
the classification of AD, MCI and NC and 93.9% predic-
tion accuracy for the progression of MCI (pMCI vs sMCI),
which outperforms existing multimodal diagnostic methods,
especially in the early diagnosis of AD. This outstanding perfor-
mance is benefit from multimodal learned features and effective
feature fusion. Moreover, the proposed model combines the
neuroimaging diagnosis with the clinical diagnosis, which makes
the whole diagnosis process is much closer to a clinician’s diag-
nosis process. For the application scenario here, it is important
to screen out all cases that may be AD, so that a high recall rate
is also a key metric in addition to a high accuracy rate. As such,
obtaining a network model with a robust accuracy-recall balance
is also a valuable direction when we aim to further improve and
optimize the diagnosis model in the future.
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APPENDIX

TABLE A1 Definition of the symbols.

Symbols Definition

ul
k j Convolutional Response of L-layer 3D Kernel Filter

(x, y, z ) Represents the pixel position of a given 3D image

F l−1
k kth feature map of layer l−1

𝛿x , 𝛿y , 𝛿z Convolution kernels corresponding to x, y, and z
coordinates

(Continues)

TABLE A1 (Continued)

Symbols Definition

W l
k j Connect the kth feature map of layer l−1 to the jth

3D kernel weight of the jth feature map of layer l

F l
j (x, y, z ) The jth 3D characteristic diagram of layer l

Sigmoid A Common activation function

bi
j Offset term of the jth characteristic graph of layer l

F ∈ R(C∕rx1×1) Input characteristics

r Dimension reduction ratio, the proportion of spatial
dimension reduction performed when using the
global pooling layer

Mc (F ), Ms (F ) Channel attention module convolution, spatial
attention module convolution

F c
avg , F c

max Channel information descriptors: average pooling
feature, maximum pooling feature

F s
avg , F s

max Spatial information descriptors: average pooling
feature, maximum pooling feature

MLP Multi layer perceptron

AvgPool Average pooling

MaxPool Maximum pooling

f7×7×7 Indicates that the filter size is 7 × seven ×
Convolution operation of 7

Accuracyk Accuracy rate of category k: the proportion of the
predicted correct quantity in positive and negative
cases to the total quantity

Speci ficit yk Category k specificity: The proportion of negative
cases identified as negative cases to all negative
cases, which measures the classifier’s ability to
recognize negative cases

Sensitivityk Sensitivity of category k: The proportion of pairs in
all positive cases, which measures the classifier’s
ability to recognize positive cases and is
numerically equal to the recall rate Recallk

Recal lk Recall rate of category k: the proportion of correctly
predicted positive cases in the total actual positive
case samples

Precisionk Accuracy rate of category k: the proportion of True
positives in the identified images

F 1k F1 value of category k: an indicator that neutralizes
accuracy and recall

TP Positive samples predicted by the model as positive

TN Negative samples predicted by the model as negative
classes

FP Negative samples predicted by the model as positive

FN Positive samples predicted as negative by the model
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